Seasonal variability of diurnal seiches in Gulf of Riga

V. Frishfelds, U. Bethers, J. Sennikovs, A. Timuhins Faculty of Physics and Mathematics, University of Latvia

Seasonal variability of diurnal seiches in Gulf of Riga

V. Frishfelds, U. Bethers, J. Sennikovs, A. Timuhins Faculty of Physics and Mathematics, University of Latvia

Uninodal oscillations Baltic proper – Gulf of Riga

For water level in Gulf:

$$\omega_{Gulf} = \sqrt{\frac{gA_{Irbe}}{L_{Irbe}A_{Gulf}}}$$

M. Otsmann, U. Suursaar, T. Kulla. Transactions on the Built Environment, **40**, 1999

Modelling of forced seiches by HBM

Sep 27 2017

Sep 28 2017

Amplitude, phase – period in Gulf of Riga

Relative amplitude with respect to Visby

Phase in hours with respect to Ventspils

~6 h

MJ Lilover, U Lips, J Laanearu, J, Liljebladh, Aquat.sci, 1998

Amplitude – frequency in Väinameri sea

Fourier spectrum of water level

M. Keruss, J. Sennikovs. Determination of tides in Gulf of Riga and Baltic Sea. Proc. International Scientific Colloqium 'Modelling of Material Processing', Riga, May 28 - 29, 1999.

Principal gravitational tidal components

Amplitude of S_1 component: $S_1 = 0.005 K_1$

Influence of tides in water level in Daugavgriva

Tidal influence on water level in real conditions

Red – only tidal forces for homogeneous liquid

Blue – difference between real cases of with and without tides: atmospheric forcing (DMI HIRLAM), stratification, boundary conditions, etc.

S₁ component (24 h) is absent in pure gravitational model

But the amplitude of K_1 (23.93 h) is increased.

Amplitude of S_1 component: relative intensity in observations

Sea breeze in Curonian lagoon: A.Rabinovich, I.Medvedev, Oceanology, 2015, Vol. 55, pp. 319

Water level observations (1960-2018) in Skulte

Daily variations, observations and tidal part

Skulte, observations, 1960-2017

Skulte, tide - notide, 2014-2018

Water level observations

Tides stronger with stratification:

M. Müller. Continental Shelf Research 47 (2012) 107

Wind hodograms in May at coastal stations

ECMWF ERA wind reanalysis (1979-2018)

Daily hodogram of sea 10 m wind

Average pressure gradient ar various time of the day (UTC)

Conclusions

- Water level in Gulf of Riga in connection with Baltic proper has eigen oscillations with period slightly above 24 h
- All stations in Gulf of Riga have approximately the same amplitude and phase in these oscillations
- Diurnal water level oscillations (phase and amplitude) in most of the year follow the tides, i.e., positions of the Moon and the Sun
- Diurnal oscillations in eastern Baltic sea are strongest in May-April when sea/land breeze is in phase with gravitational tides
- Sea breeze effect is effectively minimised by tides in August-October
- Effective gravitational tides are weaker in winter because of non-linear interaction with stronger atmospheric forcing and weaker stratification

Real oscillations of water level generally follows tidal oscillations

